A prominent paradigm for graph neural networks is based on the message passing framework. In this framework, information communication is realized only between neighboring nodes. The challenge of approaches that use this paradigm is to ensure efficient and accurate \textit{long distance communication} between nodes, as deep convolutional networks are prone to over-smoothing. In this paper, we present a novel method based on time derivative graph diffusion (TIDE), with a learnable time parameter. Our approach allows to adapt the spatial extent of diffusion across different tasks and network channels, thus enabling medium and long-distance communication efficiently. Furthermore, we show that our architecture directly enables local message passing and thus inherits from the expressive power of local message passing approaches. We show that on widely used graph benchmarks we achieve comparable performance and on a synthetic mesh dataset we outperform state-of-the-art methods like GCN or GRAND by a significant margin.
translated by 谷歌翻译
A wide range of techniques have been proposed in recent years for designing neural networks for 3D data that are equivariant under rotation and translation of the input. Most approaches for equivariance under the Euclidean group $\mathrm{SE}(3)$ of rotations and translations fall within one of the two major categories. The first category consists of methods that use $\mathrm{SE}(3)$-convolution which generalizes classical $\mathbb{R}^3$-convolution on signals over $\mathrm{SE}(3)$. Alternatively, it is possible to use \textit{steerable convolution} which achieves $\mathrm{SE}(3)$-equivariance by imposing constraints on $\mathbb{R}^3$-convolution of tensor fields. It is known by specialists in the field that the two approaches are equivalent, with steerable convolution being the Fourier transform of $\mathrm{SE}(3)$ convolution. Unfortunately, these results are not widely known and moreover the exact relations between deep learning architectures built upon these two approaches have not been precisely described in the literature on equivariant deep learning. In this work we provide an in-depth analysis of both methods and their equivalence and relate the two constructions to multiview convolutional networks. Furthermore, we provide theoretical justifications of separability of $\mathrm{SE}(3)$ group convolution, which explain the applicability and success of some recent approaches. Finally, we express different methods using a single coherent formalism and provide explicit formulas that relate the kernels learned by different methods. In this way, our work helps to unify different previously-proposed techniques for achieving roto-translational equivariance, and helps to shed light on both the utility and precise differences between various alternatives. We also derive new TFN non-linearities from our equivalence principle and test them on practical benchmark datasets.
translated by 谷歌翻译
在这项工作中,我们提出了一个新颖的基于学习的框架,该框架将对比度学习的局部准确性与几何方法的全球一致性结合在一起,以实现强大的非刚性匹配。我们首先观察到,尽管对比度学习可以导致强大的点特征,但由于标准对比度损失的纯粹组合性质,学到的对应关系通常缺乏平滑度和一致性。为了克服这一局限性,我们建议通过两种类型的平滑度正则化来提高对比性学习,从而将几何信息注入对应学习。借助这种新颖的组合,所得的特征既具有跨个别点的高度歧视性,又可以通过简单的接近查询导致坚固且一致的对应关系。我们的框架是一般的,适用于3D和2D域中的本地功能学习。我们通过在各种挑战性的匹配基准上进行广泛的实验来证明我们的方法的优势,包括3D非刚性形状对应关系和2D图像关键点匹配。
translated by 谷歌翻译
我们提出了一种针对非等级地标的非刚性形状匹配的原则方法。我们的方法基于功能地图框架,但我们没有促进异构体,而是集中在近乎符号的地图上,这些图可准确地保留地标。首先,我们通过使用固有的Dirichlet-Steklov本本特征来引入新颖的地标适应性基础来实现这一目标。其次,我们建立了在此基础上表达的保形图的功能分解。最后,我们制定了一种构成形式不变的能量,该能量促进了高质量的具有里程碑式的保留地图,并展示了如何通过我们扩展到设置的最近提出的Zoomout方法的变体来求解它。我们的方法是无描述符,有效且可靠的,可显着网格变异性。我们在一系列基准数据集上评估了我们的方法,并在非等法基准测试和等距范围内的最新性能上展示了最先进的性能。
translated by 谷歌翻译
在两个非辅助变形形状之间建立对应关系是视觉计算中最根本的问题之一。当对现实世界中的挑战(例如噪声,异常值,自我结合等)挑战时,现有方法通常会显示出弱的弹性。另一方面,自动描述器在学习几何学上有意义的潜在嵌入方面表现出强大的表现力。但是,它们在\ emph {形状分析}中的使用受到限制。在本文中,我们介绍了一种基于自动码头框架的方法,该方法在固定模板上学习了一个连续形状的变形字段。通过监督点在表面上的变形场,并通过小说\ emph {签名距离正则化}(SDR)正规化点偏面的正规化,我们学习了模板和Shape \ Emph {卷}之间的对齐。经过干净的水密网眼培训,\ emph {没有}任何数据启发,我们证明了在受损的数据和现实世界扫描上表现出令人信服的性能。
translated by 谷歌翻译
在本文中,我们介绍了复杂的功能映射,它将功能映射框架扩展到表面上切线矢量字段之间的共形图。这些地图的一个关键属性是他们的方向意识。更具体地说,我们证明,与连锁两个歧管的功能空间的常规功能映射不同,我们的复杂功能图在面向的切片束之间建立了一个链路,从而允许切线矢量场的稳健和有效地传输。通过首先赋予和利用复杂的结构利用各个形状的切线束,所得到的操作变得自然导向,从而有利于横跨形状保持对应的取向和角度,而不依赖于描述符或额外的正则化。最后,也许更重要的是,我们演示了这些对象如何在功能映射框架内启动几个实际应用。我们表明功能映射及其复杂的对应物可以共同估算,以促进定向保存,规范的管道,前面遭受取向反转对称误差的误差。
translated by 谷歌翻译
几何数据的高效和实际表示是几何处理中的几种应用的普遍存在问题。广泛使用的选择是通过它们的光谱嵌入对3D对象进行编码,与每个表面点相关联通过差分操作员的特征函数的截断子集在该点处假定的值(通常是拉普拉斯人)。几次尝试为不同应用程序定义新的,优选的嵌入物在过去十年中看到了光明。尽管有限制,但标准拉普利亚特征障碍仍然在可用解决方案的顶部保持稳定,例如限于近体形状匹配的近等待物。最近,一个新的趋势表明了学习Laplacian特征障碍的替代品的优势。与此同时,许多研究问题仍未解决:新的基础比LBO特征功能更好,以及它们如何与他们联系?它们如何在功能形式的角度下采取行动?以及如何与其他功能和描述符在新配置中利用这些基础?在这项研究中,我们正确地提出了这些问题,以改善我们对这种新兴的研究方向的理解。我们在不同的背景下展示了他们的应用相关性,揭示了他们的一些见解和令人兴奋的未来方向。
translated by 谷歌翻译
尽管在非刚性3D形状匹配中的深函数映射成功,但不存在于同时模拟自称和形状匹配的学习框架。尽管对对称性不匹配导致的错误是非刚性形状匹配的主要挑战。在本文中,我们提出了一种新颖的框架,该框架同时学习自我对称以及一对形状之间的成对地图。我们的关键思想是通过正则化术语耦合自我对称地图和一对映射,从而为其两者提供联合约束,从而导致更准确的映射。我们在几个基准上验证了我们的方法,在那里它在两个任务中表达了许多竞争基础的基准。
translated by 谷歌翻译
Spectral geometric methods have brought revolutionary changes to the field of geometry processing. Of particular interest is the study of the Laplacian spectrum as a compact, isometry and permutation-invariant representation of a shape. Some recent works show how the intrinsic geometry of a full shape can be recovered from its spectrum, but there are approaches that consider the more challenging problem of recovering the geometry from the spectral information of partial shapes. In this paper, we propose a possible way to fill this gap. We introduce a learning-based method to estimate the Laplacian spectrum of the union of partial non-rigid 3D shapes, without actually computing the 3D geometry of the union or any correspondence between those partial shapes. We do so by operating purely in the spectral domain and by defining the union operation between short sequences of eigenvalues. We show that the approximated union spectrum can be used as-is to reconstruct the complete geometry [MRC*19], perform region localization on a template [RTO*19] and retrieve shapes from a database, generalizing ShapeDNA [RWP06] to work with partialities. Working with eigenvalues allows us to deal with unknown correspondence, different sampling, and different discretizations (point clouds and meshes alike), making this operation especially robust and general. Our approach is data-driven and can generalize to isometric and non-isometric deformations of the surface, as long as these stay within the same semantic class (e.g., human bodies or horses), as well as to partiality artifacts not seen at training time.
translated by 谷歌翻译
基于简单的扩散层对空间通信非常有效的洞察力,我们对3D表面进行深度学习的新的通用方法。由此产生的网络是自动稳健的,以改变表面的分辨率和样品 - 一种对实际应用至关重要的基本属性。我们的网络可以在各种几何表示上离散化,例如三角网格或点云,甚至可以在一个表示上培训然后应用于另一个表示。我们优化扩散的空间支持,作为连续网络参数,从纯粹的本地到完全全球范围,从而消除手动选择邻域大小的负担。该方法中唯一的其他成分是在每个点处独立地施加的多层的Perceptron,以及用于支持方向滤波器的空间梯度特征。由此产生的网络简单,坚固,高效。这里,我们主要专注于三角网格表面,并且展示了各种任务的最先进的结果,包括表面分类,分割和非刚性对应。
translated by 谷歌翻译